许多数据分析任务在很大程度上依赖对表的深入了解(多维数据)。在整个任务中,都存在表字段 /列的共同使用的元数据属性。在本文中,我们确定了四个这样的分析元数据:测量/维度二分法,公共场作用,语义场类型和默认聚集函数。尽管这些元数据面临不足的监督信号的挑战,利用现有的知识和理解分布。为了将这些元数据推理为原始表,我们提出了多任务元数据模型,该模型将现场分布和知识图信息融合到预训练的表格模型中。对于模型培训和评估,我们通过使用下游任务的各种智能监督来收集分析元数据的大型语料库(来自私人电子表格和公共表格数据集的〜582K表)。我们的最佳模型的精度= 98%,命中率在TOP-1> 67%,精度> 80%和四个分析元数据推理任务的精度= 88%。它的表现优于基于规则,传统机器学习方法和预训练的表格模型的一系列基线。分析元数据模型被部署在流行的数据分析产品中,帮助下游智能功能,例如Insights挖掘,图表 /枢轴表建议和自然语言QA ...
translated by 谷歌翻译
耐药性是对全球健康的重大威胁,以及整个疾病和药物发育的临床治疗中的重要疑虑。与药物结合有关的蛋白质中的突变是适应性耐药性的常见原因。因此,对突变如何影响药物和靶蛋白之间的相互作用的定量估计对于药物开发和临床实践来说是至关重要的。已经证明,依赖于分子动力学模拟,Rosetta方案以及机器学习方法的计算方法能够预测对蛋白质突变的配体亲和力变化。然而,严重限制的样本量和重质噪声诱导的过烧和泛化问题已经很广泛地采用了用于研究耐药性的机器学习。在本文中,我们提出了一种稳健的机器学习方法,称为Spldextratees,其可以准确地预测蛋白质突变并鉴定引起抗性突变的配体结合亲和力。特别是,所提出的方法按照易于学习的样本开始的特定方案级别,逐渐融入训练中的特定方案,然后在训练中迭代,然后在样本权重再验计算和模型更新之间迭代。此外,我们计算了基于物理的基于物理的结构特征,为机器学习模型提供了对这种数据有限预测任务的蛋白质的有价值的域知识。该实验证实了提出的方法在三种情况下预测激酶抑制剂抗性的方法,并实现了与分子动力学和Rosetta方法相当的预测准确性,具有较少的计算成本。
translated by 谷歌翻译
蛋白质与几乎每个生命过程都相关联。因此,分析蛋白质序列的生物学结构和性质对植物勘探至关重要,以及疾病检测和药物发现。传统的蛋白质分析方法往往是劳动密集型和耗时的。深度学习模型的出现使得大量数据的建模数据模式可能。跨学科研究人员已经开始利用深入学习方法来建模大型生物数据集,例如,使用长短期记忆和卷积神经网络进行蛋白质序列分类。在数百万年的进化之后,进化信息在蛋白质序列中编码。灵感来自自然语言和蛋白质序列之间的相似性,我们使用大规模的语言模型来模拟进化尺度蛋白序列,编码表示的蛋白质生物学信息。在令牌级和序列级任务中观察到显着改进,表明我们的大规模模型可以准确地捕获进化尺度单个序列上的预测信息。我们的代码和型号可在https://github.com/thudm/proteinlm获得。
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
We consider infinite horizon Markov decision processes (MDPs) with fast-slow structure, meaning that certain parts of the state space move "fast" (and in a sense, are more influential) while other parts transition more "slowly." Such structure is common in real-world problems where sequential decisions need to be made at high frequencies, yet information that varies at a slower timescale also influences the optimal policy. Examples include: (1) service allocation for a multi-class queue with (slowly varying) stochastic costs, (2) a restless multi-armed bandit with an environmental state, and (3) energy demand response, where both day-ahead and real-time prices play a role in the firm's revenue. Models that fully capture these problems often result in MDPs with large state spaces and large effective time horizons (due to frequent decisions), rendering them computationally intractable. We propose an approximate dynamic programming algorithmic framework based on the idea of "freezing" the slow states, solving a set of simpler finite-horizon MDPs (the lower-level MDPs), and applying value iteration (VI) to an auxiliary MDP that transitions on a slower timescale (the upper-level MDP). We also extend the technique to a function approximation setting, where a feature-based linear architecture is used. On the theoretical side, we analyze the regret incurred by each variant of our frozen-state approach. Finally, we give empirical evidence that the frozen-state approach generates effective policies using just a fraction of the computational cost, while illustrating that simply omitting slow states from the decision modeling is often not a viable heuristic.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
In this work, we tackle two vital tasks in automated driving systems, i.e., driver intent prediction and risk object identification from egocentric images. Mainly, we investigate the question: what would be good road scene-level representations for these two tasks? We contend that a scene-level representation must capture higher-level semantic and geometric representations of traffic scenes around ego-vehicle while performing actions to their destinations. To this end, we introduce the representation of semantic regions, which are areas where ego-vehicles visit while taking an afforded action (e.g., left-turn at 4-way intersections). We propose to learn scene-level representations via a novel semantic region prediction task and an automatic semantic region labeling algorithm. Extensive evaluations are conducted on the HDD and nuScenes datasets, and the learned representations lead to state-of-the-art performance for driver intention prediction and risk object identification.
translated by 谷歌翻译
New architecture GPUs like A100 are now equipped with multi-instance GPU (MIG) technology, which allows the GPU to be partitioned into multiple small, isolated instances. This technology provides more flexibility for users to support both deep learning training and inference workloads, but efficiently utilizing it can still be challenging. The vision of this paper is to provide a more comprehensive and practical benchmark study for MIG in order to eliminate the need for tedious manual benchmarking and tuning efforts. To achieve this vision, the paper presents MIGPerf, an open-source tool that streamlines the benchmark study for MIG. Using MIGPerf, the authors conduct a series of experiments, including deep learning training and inference characterization on MIG, GPU sharing characterization, and framework compatibility with MIG. The results of these experiments provide new insights and guidance for users to effectively employ MIG, and lay the foundation for further research on the orchestration of hybrid training and inference workloads on MIGs. The code and results are released on https://github.com/MLSysOps/MIGProfiler. This work is still in progress and more results will be published soon.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
Designing better deep networks and better reinforcement learning (RL) algorithms are both important for deep RL. This work focuses on the former. Previous methods build the network with several modules like CNN, LSTM and Attention. Recent methods combine the Transformer with these modules for better performance. However, it requires tedious optimization skills to train a network composed of mixed modules, making these methods inconvenient to be used in practice. In this paper, we propose to design \emph{pure Transformer-based networks} for deep RL, aiming at providing off-the-shelf backbones for both the online and offline settings. Specifically, the Transformer in Transformer (TIT) backbone is proposed, which cascades two Transformers in a very natural way: the inner one is used to process a single observation, while the outer one is responsible for processing the observation history; combining both is expected to extract spatial-temporal representations for good decision-making. Experiments show that TIT can achieve satisfactory performance in different settings, consistently.
translated by 谷歌翻译